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The rcader who is not fam:har with P 5 tnangle should be warned

that it is not a geometric triangle with three angles and three sides. What
*we call Pascal’s triangle is an important numerical table, with the help of
which a number of computation problems may be solved. We shall
- examine ne some of these problems and shall incidentally touch upon the
question on of what *““solving a problem” can mean in general.

‘This exposition requires no preliminary knowledge beyond the limits
of the eighth-grade curriculuffi, except for the definition of and notation
for the zeroth power of a number. That is, one must know that any non-
zero number, raised to the zeroth power, is considered (by dcﬁmtionl)
to be equal’to unity: a°® = 1 for 2 # 0.

.
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During the Eighth Moscow Mathexﬂgﬁeal Olympiad (1945), the follow-
. " ing problem was presented to the ninth- and tenth-grade participants: *-
A network of roads is given (fig. 1.1). Fromppoint A4, 2!°®men set out.
Half go in direction 7, half in direction m. Reaching the first intersection, -
. each group divides; half go in
o . , ‘ direction /, and half in direction m.
' . Siukch a division takes place at each
intersection. How many people
arrive at each intersection of
1000th row 72
First let us observe that at the
moment, we-do not know whether
the problem has a solution; that is,
whether the division of people can
proceed as required by the prob- |

£

Fig. 1.1, lem’s conditions. We know that if
_ . an odd number of people arrive at
some intersection at which the usual division of the s of people is to

take place, then the division is blocked. Consequently, for the probleg
to have a solution, it is necessary and sufficient that an even number of
people arrive at each intersection of each of the first thousand rows,
from the zeroth to the nine hundred ninety-ninth. We must make certain
' that this is so in the process of solvifig the problem. :
Let us begin by introducing symbols for the number of people who pass
. i

I. See A. M. Yaglqm‘ and 1. M. Yaglom, Challenging Mathemgical Problems
with Elementary Solutions (San Francisco: Holden-Day, 1964), 1:19, problem 62b.

2. Consider the rows te be numbered, starting with the zeroth. Thus, in the*
zeroth row, there is one intersection (A); in the first, two; in"the second, three;
and so on, . ¢

. , .
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2 " A Problem| from the Eighth Olympiad
i

through each intersection of iour network of roads. The intersections of
each row will be numbered from left to right beginning with*the zeroth;
consequemly, the intersections of thesrth row will be numbered from zero
“to n. The number of people who pass through the kth mtcrsectxgn 4t the

nth row wm be denoted by H*;. Since it is not clear at the present time .

that the problem‘ has a solution, we cannot be certain that a// numberS
H™, exist; that is, the number H ™, exists for each k& from 0 to » and for
every n from 0 to 1000. It is, however, clear that some of these numbers :

exist. By virtue of the notation we have introduged,

.H°o.= 21000 (1.

Let us now determine how the numbers H", (k = 0, 1,2,...,n) and
H"3 (k=0,1,2,...,n + 1) are related, under the supposition that
they all egcist. We shall show that if all the numbers.H ™, ¢xist and are.
. even, then all the numbers H"*1, exist. Let“us examine the nth and
(n + Dth rows of intersections and the road segments which connect

. them. At each intersection we place the appropriaté symboi for the num-

ber of people arriving (see fig. 1.2). The number of people who enter the
. _

L}

-

Ha HYy Moy M, H .
\ [ [ '
cet | A 4 1 N ll ral
H) H, # f0

Fig. 1.2

zeroth intersection of the nth row (that is, H o) is divided by two, and
only half of these people enter the zcroth intersection of thc p + 1)st
row; therefore, \

3

a
anlo —

H™,

5 (1.2)

The other half of the /", people enter the firSt intersection of the
(n + 1)th row and there join half the people who left the first intersection
of the nth row, who number H" /2.

Therefore, {17 *f,': (H", + H™)/2. In general, the number of people
who enter the Ath intersection of the (7 + 1)th row is the sum of half the
number of people who left the gk -- I)th intersection of the nth row

9
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. A Problem from the Eighth Olympiad - 3 )

(or H .- x/2) and half the number of people who left the kth inter-
section of the nth row {(or H *‘k/2) Thus,

\ [ ] ) . .. -“
/‘ v " H"“k=f—{—k—"—2i—‘,—q—'5,‘ forl<sks<sn. ‘ (1.3)
© . N ‘ L } ‘ . - . ,“

" Finally, the number of people who enter the (7 + 1)th mtcrsectmn
of the {n + 1)th row is equal to half the numbgr of pcnple who Icf't the
" nth mtersecnon of the vith row: :

[} - ; [
. : Hn+1‘*1 = H L]

"“ "‘\_‘d . 2

L ey

The refations ¢1,1)<(1.4) allow us to establish the fact that theprob!cm
has a solution. Actually, from equations (1.2)(1.4) it follows that if for *
any fixed n all numbers of the nthrow (H", ™, ..., H*,) exist and are
,dms:blc by 2a, then all numbers of the (n +\i)th row (H’”‘1 Hr*y

L HR L) exist and are divisible by a. For if we suppose that
H '\,, H™,..., H", exxst and "are all divisible by 2a, then there are
integers (whole numbers) M®o, M™, ..., M*, satisfying the relation¥

Hno = 2{1M.n0 d
J H™, = 2aM*,
H™ = 2aM¢,.
L}
Thus, we have (using (1.2)-(1.4)):
- - H’Hlo*:. H20=GM“O,\ *
}1,‘4_1 — Hﬂk._l + Hﬂk — 2a__M_‘ﬂk~;&+ 20M"k
- ck , 2 . \ 2
=gM" ., + M",) forl < le n;
H*, |

an-{»l,H_l - 2 — GM“

This establishes the claim that the numbers H" 3, H™*Y, .., H
exist and are all divisible by a.
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4 A Problem from the Eighth.Olympiad

: Thcrefore, sgnce all numbers of the zeroth row (there is only one,
H?%) exist and are divisible by 2‘°°° (by 1. I), we have vcnﬁed that all
numbers of the ﬁrst mw , :

.
. L ]
I [

exist and are divjsibic by 2°%¢, aH‘ numbers of thc) second row,
‘ ‘< H?3 .H“h H3,, | "
‘exist and are divisible by 2°°%; and 500 xm until al numbem of the 99%11
row,/' . . 7 .
v o . N ‘Hnab'm }'{9'99;". ] ’ HO

-

exist and are &ivisiblc by 2; and all pumbers of the lQOOth row,

onaéa Hm'oah \ .’_onoomoo ,
exist (and are divisible by 1). _ |

The relations (1.2)(1.4) not only show that the problem has-a solu-
tion, but also provxde a method for calculatmg the ime of xfumbers

n+1 n+ x+1
H H L, HY L
N . s
N L]

from the line

H%, H™, ..., H,.

4 -
Repeatedly applying these relations, beginning with the zeroth line (by
+ using (1.1)), we theoretically can calculate the numbers H*, for all
501,501 intersections in@all'thc rows through the 1000th and, in par-
ticular, for all intersections of the 1000th row, thus solving the problem.
The direct calculations for the first rows are: :

Ho, 21000 ' H° 21000
HIQ-«—* _ = 2089. g1 0 _ = Q809
2 2 A 2 2 ’
H, = %!_g _ 29299 _ ges, .AH“, _ HY, ;_ H':Q_m_ 2999 _;_ 2999 Yy
H? 288 3 . 2oees
H‘zg _4__1__*_=2993 HSG:__O______299’7
2 2 : 2 2 ’
2 2 998 999
}131=-H°Z—H’=2 ;2 =3.297; and soon.
[
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N Thus, the problem af chapter 1 is solved . N
“How is it solved?” wonders an unconvmoed ragder (the convinced .
reader knows in advance what the author is going to say, and nothing
makes him wonder). &I don’t see tha we have solved it.”
AuTHOR: Well, of course we have solved it. You know that to solve
a problem’ méans to find its solution. And we have just found\ the
solution,
v READER (indignasdy): Is this really a solution? .
' AUTHOR (pretending that he doesn’t understand what the trouble u‘)
Well, is it really incorrect? °
Reaper: No, “it™ is correct, but “it” is not a solutiop. -
. Aunw- But then what is a solution? Vi .
READER; A line of numbers showing how many people arrive at each
mtersecuoi) of the thousapdth row. t
AUTHOR: But there would be 1001 numbers in this line. Is it possxbie
. that the organizers.of the Eighth’ le%ia‘d wanted the participants to
¢ write 1001 numbers? - : . .
* READER becomnes thoughtful.

AuTHOR; | have a proposal. So as not to complicate the sxtua;xon

\ with long sequences, let us sclect one intersection, and concern ourselves
// with gge number of people who arrive there, All right? ’
RERADER agrees.
> AuTtHOR: Now what will we consider té‘be a solunon to the following
problem: How many people arrive at theffthird intersection of the
fourth mwf? - .
'ReaDEr: Huh? A nimber.
. AUTHOR: Written how? : .
READER (amazed): Well, in the decimal system.
AUTHOR: But isn’t an answer like “H*;” a solution?

‘. 5
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6 . What It Means to Solve a Problem .

ReADER: Of course not. Some solution!
AUTHOR: By continuing the series of -calculations which we began

at the end of the preceding section, it is easy to verify that 2% people .
visit the third intersection, of the fourth TOW. will the answer 29984«

be a solution to the problem? ~ :

READER (mll not seeing-the trap): Yes, of course. .
. AUTHOR But you know that the expressxon %2998° i5 not an expres-
sion in the decimal system. This expression consfsts of rwo decimal
numbets, “ 2" and **998,”” whose relative position shows what operation
must be performed upon them in order to obtain the de number’

- READER: But the expressxon VAR can eas;ly be co ed into -
~ decimal form ¥ N °

AUTHOR: Not so easily; just try to raise 2 to the 998th power. But
that isn’t even the troubld; the trouble is that just now: you contradicted
« your previous statement. Earlier, you agreed to consxdsr only a number
written in the decimal system as a solution. From the point of view of
this deﬁﬁition; the expression **2%98” is still not a solution (it is a so-

' -called half-finished product from whicl{ the solution may be derived).

of course, such a point of view is acceptable only if it is held con-
sistently. Bl%nother point of view is possible, acco;dfhg to which 2898
is a solution. Such a point of view will probably, ctarify the matter for
you. You know that often the simplest answers to mathematical
problems come not directly i the form of a number written down in the
decimal system, but in related ** indirect” form. With this in mind, what

“should we settle for as a ““solution,” in our example, to the problem of

how many people visit the third intersection of the fourth row ?

READER: Inour example, we must accept as a solutién any expression
for which there is a method which lets us get a numerical answef
(written in the decimal system) from that expression. That is, 2°98 will
be a solution. Although the method of getting a decimal answer (997

_ consecutive multiplications) is long,.it is feasible in principle..

AuTHoORr: But then why isn’t H4; a solution? Here, too, there is a
method of getting a decimal answer. It is given by the relations (1.1)-
(1-4)”-

- READER is pc_rplexed

AUTHOR (satisfied that he has succeeded in Iegdmg the reader into a
blind alley  -the inexperienced reader, that is: the experienced reader will

. himself lead the author into a blind alley): The point is that there are at

least three interpretations of what we mean by a solution to the problem
of the number of people who visit a given intersection.

> First intergretation; By a solution, we mean a number written in the
decimal system.

I3 \

%
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Second interpretation: By a solution, we hean some expression whxch
designates a number, and for which a method is known that allows us
to get the dcsxgnated decimal number (a so-called ﬁrst—mterpretanon _
solution) from the expression.

Third interpretation: By a solution, we-mean some exprcssxon which’
designates a number (writen in the decimal system) and which is made
up - of numbers and some operations considered ** standard” (for
instance; 7€ "usual arithmetic’ operations).’. We r:qmrc that each
standard operation be accempanied by a method of getting the,decimal
result from the decimal numbers to which it is applied (as is the case
with the arithmetic operations). Then fpr .each expression which is
allowed, there will exist ‘a method allowing us to ‘get the decimal
number designated from the decimal numbers which are part of the’
express;on so that a solution under the third mterpretatmn wﬂl auto-
matxcally be a solution under the second.

* Under the first interpretation, neither H4; nor 2°% is a solution to
the problem of finding the number .of people arriving at the third inter-
section_ of the fourth row. To get "a solution, we must find a decimal .
expression for 2%9%; however, this expression would consist of more
than 30Qdigits, and could be calculated in a reasonablg amount of time
only by a computer.

Under the second interpretation, both H# 4, anid 2998 are solutxons

In the case of the third interpretation, everything depends upon the
choice of the initial standard operations: If-exponentiation is included
among them, then 2°°® will be a solution; if it is not included, then 2088
will not be a solution. If the standard operations include the operation
H which calculates the number H?*, ffom the numbers n and k (note
that the relations (1.1)—(1.4) give a method of performing such a
calculation, so that the requirement we imposed-on standard operations
is satisfied), then H*; will be a solution to the prob!em; in the oppositc
‘case, it will not.

~» The question of whether we may choose the standard operat:ons
arbitrarily naturally arises. Speaking formally, we may certainly do so.
In practice, of course, we should choose as sfandard operations (through
“which we arg required to express the solution of any problem) such
operations as are encountered in the solutions of many problems, or
at least in the solutions of important ones. Such operations include
.the four arithmetic gperations and several other operations, -such as’

The set of standard operations myst be indicated beforehand. It is important
to emphasxzc that thethird interpretation depends on the choice of this set. Thus,
the expression 2°°® will be a solution under the third interpretation precisely if the
operation of exponentiation is included as one of the standard operations,

A



- 8 . What It Meaas to Solve a Problem

exponentiation and the operation of taking factorials (see below, chapter x
‘ - 6). If the operation H were needed for important problems or if our
) own problem aboyt interscct}cns were very importaﬁ, then perhaps the
operation H would deserve to be ranked with the ndard operations.
However, the operation H was undeserving before we introduced our
proMem, and is scarcely worthy now. In section 4 we will examine an
~ operation similar to H which, as wé shall see, deserves to be incladed
as a standard operation. . T e
But now we must return to our original problem of the intersections
of the thousandth row. Its solution may be sought in three forms, -
- corrgsponding to the three interpretations of a *sollition’  described *
above, -
I In the form of a sequence of 1001 numbers, written.in the decimal
system. We shall not seek such a solution (since we found it too difficyjt ,
even to find such a solution for one intersection of the fourth row).
2. In the form of an expression which in principle allows us to calou-
late the number (that is, to find a decimal representation of the number)
of people who arrive at each intersection of the thousandth row. We .
have already found such a solution: K9, for,which the process of
.t . K
calculation is given by the relations (1.1)-(1.4). o
3. In the form of an expression which not only allows us to calculate
#1109, for any k from 0 to 1000, but which is fi rmed by ‘means of
certain standard operations. It is in this Tormythat we shall seek a
. - solution. fn the following exposition it will me clear precisely which
operations will be considered standard fog/our purposes. |

-

»
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Let us consider a sequence of numbers dy, d;, ..., d,, for some
n=012... (forn = 0 this sequence “‘degenerates™ to the sequence
consisting of the single number.d,). From it, let us generate a new

J

- So = da , . - N
Se = deoy + dk (;Jk <n, /Té.z)
s dh 6y
We say that this new scquenoé is derived from the o ";/nal one by ’
FPascal's relations. For example, from. the sequence 2,0, —2, we may

produce (using Pascal’s relations) the new sequencc,Q 2, -2, ~2, and
from this one in turn the sequence 2, 4 0, —4, 2

of which is derived from the preceding by elati . -3). This
table, which we shall cxamine furt nown as ‘‘Pascal’s
triangle.” Y.

Remark 1. 1f the sequence B is denved from the sequence o by
Pascal's relations, then the sum of ;he elements of sequence 8 is equal to
twice the sum of the elcments of sequence «. For using the relations

(3.1)3.3), / .

w

mdy 4o+ d) 4y + )+t (daos + ) + by

= (do + do) + (dy + d)) + -+ (dy + dy) | |
= 2Ado + dy ++ -+ &) . G4




10 . . Pascals Triangle: R

Remark 2. We say that a sequence of numbers do, . . ., dj i Syz};?netric
 if for every whole number & from 0 to n, S

. ’ ‘ L /’/ '

5’” 5 © di - *d,-g . o (3.5)

* For example, the foug[elemcnt sequence 1 0,0, 1 is symmetnc

A sequence s, . . ., S4+1 Which is derived from a symmemc sequ;nce e

dy, ..., d, by Pdscal*s relations is 1tse1f symmcgné ’Io estabhsh thxs we

‘ must venfy the relations . . LT .
. . . ’ 2 . .. &
. . . ‘ S = S(,‘+‘1_)‘;k E N (3.6)

] o

fork=012 L nh L Butfork=()andk—n+’1thecquanon
(3 6) follows from the relations (3.1) and (3. 3) and the condition
=d, (whxch we get from (3 S)for k =0), For 1 s k ﬁ , we have:

.

S = dk 1+ dk = dn ;x—fn + dy_x = duys-n kT Fine y-ni-1
= dxm-n k-1 + d(«;n k= s(nn) ik

In the case of oyr example apphcatxon of Pagcal’s relanons to thc
ence 1,0, 0, 1 yields the ﬁve*ek:r;xent,seq ence 1,'1,0, 1, 1 which
isx If symmetric.  * .

et us now look at the sequence. cons:stx g of the single number 1.
We shall call this sequence Pascal’s zerat sequence, From it, we may
use Pascal’s relations to generate a new gequence, which we shall_call
Pascal’s first sequence. Applying. Pasal's relationd, we may then
generate Pascal’s second sequence £ rom Pascal’s first sequence, and so on,
Since imteach transition toa new sgquence, the number of sequence
elements is increased by oneg, there will'be n + 1 numbers in Pascal’s nth
sequence. Without carrying out/any calculatxons we observc that |
remarks | and 2 allow us to conglude:

1. The sum of the numbers in Pascal’s nth sequence is 2" (since in
prq_cécding‘w‘:xc séquency to the next, the sym of the numbers is
doubled, and thesum of the pumbers of the zeroth sequence is 2° = 1).

2. All of Pascal's sequefces are symmetric (since the preperty of
symmetry is preserved in passing from one sayﬁence to the next, and the
. zeroth sequem,e is sym

table, called Pascal' tnarzg!e whxch fills the mtt.rmr of an angle; any

v

b
~I

© w

+
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segment of it, composed of the zeroth through nth rows, forms a
triangle. A segment of Pascal’s triangle, consisting of the first fifteen
rows (the zeroth through the fourtegnth) is presented in figure 3.1.

Pascal's triangle is symmetric about the bisector of the angle whose
interior it fills, a consequence of the ffict that each of its rows is sym-
metric. The numbers in it also satisfy a number of interesting properties.
For example, the sum of the squares of the elements of any row is equal

~ to some element of the vertical column along the bisector of the anje.

For any prime®number p, all elements of the pth row, except the first
and last, are divisible by p.* (A prime numitive whole number
whose only positive whole number divisors are itseif and 1.)

It is clear that a method, of constructing Pascal’s triangle may be
given without relying on the notions of ** Pascal’s relations” or **Pascal’s
sequences™: Pascal's triangle is simply an infinite numerical table in
“triangular form™ in which each entry alongthe sides is 1, and in which
each of tR® other entries is the sum of the two entries above it (to the
right and to the left). The triangle first appeared in Pascal’s paper
“Trdatise on the Arithmetic Triangle,” published posthumously in 1665.
In that work the table reproduced in figure 3.2 was published, in which
each entry is the sum of the preceding entry in the same horizontal row

and the preceding entry in the same vertical column.?~

-3

1. More of these properties arc described on pp. 36-40 and 50--53 of the book
Problems in the Theory of Numbers by E. B. Dynkinand V. A, Uspenskii {Boston:
D. C. Heath and Company, 1963).

2, Sec B. Pascal, Oeurres completes, vol, 3 (Paris: Hachette et Cie, 1908), p. 234,

.



~
]

qo
1711 1 1 i 1 1 1 1 4
1 2 3 4 | s 6 7 8 9
i1 {33 | 6 10 [1s | 21 | 28 | 36
1 4 |10 [ 20 |35 | s6. 8¢ _‘
1| s ..‘x; 35 1 70 | 126 ) -~
1 6 |.21 s6 1126 | . )
1 1 1 | 2% | 84 ' \
1.8 | 36 : .
R R - .
N R N o ’
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Thus, ‘what we call *““Pascal’s triangle* differs from*the * t;iangle'" E

* examined by Pascal himself by a rotation through 45°.
Pascal investigated in detail the'properties and applications of his

- “triangle’”; several such applications will be examined in the following

section. For the present, we shall examine three of the ‘“triangle’s ™’
properties which were first noted by Pascal himself. For this purpose
(and only at this point in our exposition) we shall consider that arrange-
ment of the triangle in the plane which Pascal employed, and we shall
speak of ““rows” and ““columns.” - .
ch‘uerty 1, Each number 4 in the table is the sum of the n@mbers in
-the preceding row, from the leftmost to the number which stands
directly above A (see fig. 3.3, in-which the squares containing the
summands which give the sum A4 are shaded). ‘
Property 2. Each number A in the table is the sum of the numbers in
the preceding column,’ from the topmost to the number standing
directly to the left of 4 (fig. 3.4). o

_ } % 777 BN
77 T 4l
A Z B A
T Fig3a " R4 Fig. 3.5

N\
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Property 3 For each number A in' the table, 4 — 1 is equal to the
sum of all the numbers contained in the rectangle bounded by that

column and that row whose intersection is the entry A (this Tow and
column is not included in the rectangle; see fig. 3.5).

. The proof of property 1 is by mathematical induction, a convenient |

method of proof for assertions about the nonneganve integers (whoie
numbcrs) The proof of such an assertion for all nonnegative integers m

involves two steps: (1) establishing the assertion for m = 0; (2) a proof. ,

that the validity -of the asscmon for m = k 1mplxcs its vahdxty for
m= k + 1. ’ 2 )

-4 Onte these two \Ecqulmmc}xts are ’sat;sﬁcd thcsdes:rcd asserti
proved-for all nonnegative integers m, “for since the truth of the asse

for m = Qis estabhshcd in the first step, the second step allows us to"
~conclude that the asscmon is true for m = 1. Applying the second step

again, we may conclude that the assertion is true for m = 2, and so on.
" Property 1 may be proved by mathematical induction as follows:
Number the rows and columns (starting from the top and left) of

the triangle pictured, starting with zero. Let A*, denote the entry-in the -

nth row and mth column. The assertion is that A",. is the sum of the
first m + 1 entries of the (n —- Dth row, or .
C AN T AT R AN e AR (3.8)

Step 1. If m = 0, equation (3.8) becomes

A‘Q -~ Aa-lo .

Since A% = A" 1, = 1, the assertion holds for m = 0.
Step 2. Assummg (3.8) for m = k, and using the fact that each
“interior”’ entry s, the sum of the entry xmmedxately preceding it {n its

column and the s\ry immediately preceding it in its row, we obtain

~

AN = AN+ A
= A"_Io + Aﬂ_l; +- 4 A“_Ik + Aﬂ—fllﬁ-l (39)

by bsing our assumption (* inductive hypothesis™) on &, that

[y

A= A o4+ AV o+ AP

3.

Since (3.9) is a réstatement of (3.8) for m = k + 1, we have shown that
~ the truth of our assertion (property 1) for m = k implies its truth for
m = k' + 1. This completes the second step of the proof.

L4

™
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~ Property 2 may bc proved by performing an induction on n rather -
than m; property 3 follows either fmm pmperty 1 by induction on nor
from property 2 by induction on m. ,

More than a century before Pascal’s treatxse« however, an interesting
table~—not in tnangular but in *‘rectangular™ form—was published
in the General Treatise on Number and Measure (published in 1556-60),

* which also appeared after the death of its author, the distinguished

Italian mathqmatman Niccolo Tarfaglia (1506—59) Tartagha s gable *

had the form shown in figure 3.6.° : _ “

o
. .' ¢ R . ) i -
N>t - ' . F IR
N R RO I T T
- 1,20 3 T4 s e, o
v SRS BT Yo 352 o Lo
. ? 4 10, 20 3% 56 ; ;o
. r 5. 15 35 70 - 126 - .
, 1 6 A 56 126 252
L 1 7 28 84 210 462
* 8 36 120 330 792

o=

Fig. 3.6 .

Here each entry in.the zeroth row is 1in each of the remaining rows
the leftmost {zeroth) entry is 1, and each succeeding entry is formed as

thy, sum of th;l two entries directly before it and above it. The table

"whicR Tartagli introduced is called (naturally) “ Tartaglia's rectangle.”
. Thexlements of each of Pascal s sequences are usually numbered from
» left to right, beginning wjsh the zeroth. Thus, the second place in the
fifth row is occupied byfhe humber 10. The number occupying the kth
place in the nth row will be denoted by T", so that, for example,
70 == 1, T5; = L7344, 51001, The expression 7", will obviously be
defined forany #n = Oand & = 0, 1, ‘ -
Let us examine the infinite sequeme formed by the numbers 7", for
any fixed & and variable n, that is, the sequence

Th,THL, TR+3, . T, ... (3.10)
: ‘ »
This sequence begins with 7% since the kth row is the first row which
" has a kth entry. Its elements are the numbers in Pascal’s triangle occur-
ring in the “kth line from the left, parallel to the left side,” and also,
becayge of the triangle’s symmetry, the numbers occurring in the “kth

3

3. See G. G. Tseiten, Istoriva matematiki v Xffl i XVII vekakh TThe history of -

mathematics in the sixteenth and seventeenth cerfturies] (Moscow-Leningrad:
GONTI, 1938), p. 116, '

T
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>

21

+

o
‘e



. N

T
line from the right, paraﬂcl to the right ‘side” I8 Tartaglia's rectangle,
these. numbers fill the kth column and the kth row. :

Pascal‘s ﬂfwzgle e

K For k = 0 we get the sequence A
. LLLLLL
) _ A
,  (the zeroth column or the zeroth row in. Tartagha s rectang}e)
- For k ='1 &e get. the' sequence of ngtural numbers
L3456 S
| v N o
R (¢he first row or first column of Tartaglia's rectangle).
“, For k = 2 we get the sequence ~ ™ | .

« . | 1,3,6,10,15,21,.. .

(the second row or second column of Tartaglta’s rcctangle) The elements '
of this sequence are called triangular numberss the mth triangular num-
ber is T™*1,, so that 1 is the first triangular number, 3 is the second
triangular number, and so on. This name is a result of the fact that the*
mth triangular number 7™+, is the nymber of spheres (or other identi-
cal objects) which can be packed in the shape of an equilateral triangle
‘whose base is made up of m spheres (see fig. 3.7). In particular, the mth
triangular number is the number of elements contained in the first m
rows of Pascal’s. triangle, from the zeroth to the (m — 1)th
Lettmg k = 3, we get the sequence

1, 4, 10, 2Q, 35, 36, . ..

-

(the third row or third column of Tartaglia's rectangle). ﬂe numbers of
this sequence are called pyramidal numbers, or more precisely, tétra-
hedral numbers: 1 is the first tetrahedral number, 4 the second, 10 the
' » r.

-

3, (6

-OE

OO0 O ©

’ Fig. 3.7
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shird, and so on, so that the g¥h tetrahedral number is 7% 35, The mth
tetrahedral number 7 *3; is the number of spheres which can be packed
if the shape of & tetrahedron (triangular pyramid) with an equilateral
trixngular base of side m (see fig. 3.8). ’ o '

- - - . a
7 1 '
: B

UM

Fig. 38

*

[

4. Triangular and, pyramidal numbers (which are special cases of the so-calied .
-figure numbers) were of interest to the ancient Greeks, who attributed mysticai
properties to them. Of the writings preserved today in which these numbers are
examined, the earliest is probably Infroduction to Arithmetic, by the ancient Greek
mathematician Nicomachus of Gerasa, who lived around A.p. 100. See D, J.
Struik, A Concise History of Mathematics (New York: Dover Publications, 1967),
p. 72; B. L. van der Waerden, Science Awakening (New York: Oxford University
Press, 1961, pp. 98-4800). According to indirect information, however, pelygonal v
numbers were studied considerably earlier, in the 2d century B.C., and even earlier,
in the Sth century B.C. by the famous mathematician Pythagoras am}‘his students,
the Pythagoreans (see pp. 4647 of the above book by D. J. Struik).” .
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By virtue of their definition, the numbers T®; are subject to the
- following relations: ‘
T =1, . | I (4.0)
: . r ' . .

T4l = Tr¥l =1 forn = 0,1 2, 4.2)
T T T Rra=0,12. k=128.n @3

4

The numbers 7%, are completely determined by these rclaﬁons;’ using

the equations (4.1)<(3.3), we may construct as many rows of Pasa_;{'s :

triangle as we wish.

The definition of T", may be extended in a naturaI way so that it
makes sense for any nonnegative integer # and any integer k. To do this,
we set 7%, = 0 for n > 0 and for k such that 0 > k or k > n. Thus,
T*. = 0 for all pairs (n, k) for which n > 0, k¥ < 0, and for all pairs
(n, k) for whichn > 0,k > n. The Telation T"*3, = T™ _, + T, will
then be satisfied for all k (and not only for k from 1 ton, as in [4. 3]) and

the numbers 7", will be completely determined by the following

equations: /\ \

TDQ=1!
o, =~ } . fork #0, @5

T+t =T _, +T" foralin = Oandallk. (4.6)

4.4)

These relations permit us 0 give a graphic representation of the
1T |

N " . ‘ f
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zeroes, arranged in staggered rows, as shown below:

}

generation of Pascal's triangle. Let us censxder an infinite table @

. 0Ll 0000, )
‘ 00000 .. :
0000.
...00000 : s
o v RTPERPY oo
It is clear that such a tabje satisfies Pascgl's relations, which require each

number to be the sum qf the two nearest numbers in the preceding row.” *

We now imagine that odre of the zeroes in the first'row of this table is
replaced by a one. If Pascal’s relations are to bg preserved, then the
** perturbation” " will **enlarge to an angle’—just like a wave in*d brook
when disturbed:by a suck——m the form of Pascal’s tnanglc

L 00100 ... |
_ ,....0‘01100_.... o
S : .01210... A .
: v 0183710,

---------------- Ve e e &
.

Given arbxtnary nand k(n=0,1,2,...; k=01, . .y n), it would
be possible “fo find T*, if we had suﬁ‘icxent t:mc and patiepce, by
writing out Pascal’s triangle and‘eontmumg until we arrived at the kth

number of the nth row. Or we could tak® advantage of the relations -

(4.1)(4.3) which permit us to &etermme T rformmg a finite

number of additions. .
We leave it as a problem: for the reader to determine the minimum

number of additjons which must be carried out to calculate 77, using

the relations (4. I)—(4 3), for given n and k. (Hint: Try to take advantage ‘

of the symmctry of Pascal’s triangle.)

1. We will consider an mﬁmtc mw - g@
RS
ey Sy S0y ST, S0y S1y F3p 0 0 e

mLe derived from the infinite row  ~
d—ng d—)‘.o d{h dh d21 s

by Pascal’s law, when s¢ = di 1 d, for each k. The definition of Pascal s Iaw
for finite rows follows from this if h finite row \ .
fk Xoy X150 ey Xn !
is identified with the infinite row (3
e 0,0,0, xp, x ...fx.,0,0,0,....
L X o
2 )° ‘
<9

-
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Let us agree to call the operation of ealculatingfj"k from the numbers
) k and n, Pascal’s operation. Pascal’s operation is then'd¥fined for any
nand k for whichn 2 0,0 < k s n? | ‘ o
» But if we redefine 7%, according to relations (4.4)+(4.6), then Pascal’s
operation will be defined for any nonnegative integer n and any.
-integer k. - - ‘
With_the help of Pascal’s operation, it is eas% to write down the
: . numbers H*,, which serve as g solation to the Olympiad problem of
‘ /‘ .section 1. To find these numbers, we first define (form = 0, 1, .. ., 1000;

g=0,1,...,m) ) B ‘ K
' . AR ! H" | o | 4.7
, Y : “.7)
' " 50 that 4 . ¢
) R s y .

. . an‘= 21000—n2nq . Y (4.8)

. Then, from the relations (4.7) and (1.1), we get M
; A - 20 = 210@0,21000 =1, | (4.9)

.

In the relations (1.2), (1.4), arf¥ (1.3) we may then replace the number
H™, by its expression in terms of Z™, given in (4.8). We get, from (1.2),
ZIQDQ-RZKO .
——2."

1000~-(n+ 1) +1
. 2 (n Zn 0 =

-

from which we obtain

e A L S (4.10)
*  In exactly the same way, from (1.4) we get

zmooﬂnzsn
41 2

*

> : L 2mue(n+1)zn+1ﬂ

ﬁ’ascai himself {(proceeding from the rectangular arrangement of the table,
which he proposed—see fig. 3.2, p. 12, above) examined a different operation in
his treatise, thatr of finding the numbe¢r standing at the intersection of the xth
column and the yth row {with the rows and columns numbered beginning with the
first, so that this operation is defined for x = 1, ¥ = 1) from the numbers x and y.
If this number is denoted by P{x, ¥), then, as one may easily verify, P(x, y) =
Fr-rtev-1  fromwhich T = Ptk + L,n—k + 1)

3. Since 2 to the zeroth power is considered to be equal to 1, for m = 1000,
‘equation (4.7) takes ¢he form Z1090, == F3000 ‘

-
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from which : : ) e

Finally, from (1.3) we get

21000-n, 7% 4 21}000—:,23‘:

210019(—(“1_)2“1'_: = : 3 - s 1 S k < n,
from which y
C zeyezn,+Zhlskse @1

The equations (4.10)—(4..1'2) show that each sequence
( : : Al

— 7R+l +1
Wyp1 = <£”', 0__:---9 Z“ a+1,>:

where n = 0, 1, .. ., 999 is obtained from the preceding sequence

Wy = <Z'0:‘- . -:Z‘ny . ’

according to Pascal’s relations. Since, as is clear from equation (4.9),:' '

the initial sequence

~wp =<2 0
is Pascal’s zerqth sequence, then the sequence fpllowing it, wy, is Pascal’s
first sequence; the sequence w, is Pascal's second sequence; and so on. For
each m from 0 to 1000,* the sequence wy, is Pascal’s mth sequence, and

AT L (4.13)

.Consequently, by (4.8), for-each m =0,1,..., 1000 and for each
- q=01,...,m, '
. . : o

qu — 21°D°_me§ ] (4.14)

In paticular, for m = 1000, -

- . H m.eéq = J1000 (4.15)

.

. ) N '
4. For m > 1000, the sequence w, is not defined.
N

/ : .

. X
) 2 /

*

&
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Thus, the number of people who arrive at an intersection in the thou-
sandth row is sinply an element of Pascal's thousandth sequence! If
Pascal’s operatian is considered to be standard, then equation (4.15),
gives a solltion to the problem of section | (in the third form discussed
at the end of.chapter 2). In the following two chapters we shall see how
two important problems can be solved with the aid of Pascal’s operation,

-



5 Binomial
| — Coefficients
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F

~ In this section we shall find expressions for the so-called binomial
coefficients by using Pascal’s operation. In order to define the-binomial .
coefficients, we take the binomial 1 + x and raise it to powers 0, 1, 2,
3,..., arranging the terms of the resulting polynomials in order of
ascending powers of the symbol x. We get o

(+x0=1, SRR B3
(1 + x')l,_: ++x, - (5.2)
(1 + x)? (455 1+ 2x + 22, (5.3)

A+ 20 =0+ 4% =1+ 3x + 3x2? + X8, (5.4)

and so on.
In general, for any nonnegative integer ,

(I + X)" = @ +a3x + @x® + -+ + apx>, (5.5

where ag. dy, ..., dp A€ constants. 1f you wish, you can easily verify
that p = n and that g, = a, = 1; however, we do not need this now.
Somewhat later on, we’will obtain this result as a consequence of a
more general formula. At this stage, it is sufficient for us to know that
the result of raising the binomial 1 + x to the power n (where n is @
nonnegative integer) may be wrilten as a polynomial with integral
coefficients, arranged in order of increasing powers of the letter x, as
exhibited in the relation (5.5). This polynomial is called the binomial
expansion of (1 + x)". Of course, its coefficients (and p + 1, the number

22
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" and from the relations (5.1)«5.4), we get )
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A

‘? ‘- of thcm) depend on . In order to stress this dependence, one often
.. makes use of expressions for these coefficients in which n appears, Specifi-
* cally, the coeflicient of x* in the binomial expansion of (1 + x)" will be

designated by (Z) The numbers (z

The relation (5.5) may now be written as

) are called binomial caeﬁcienis,

S Users (3)?('5)“('5)*“ *'“*(ﬁ)-"’" GO

-

¥

D= Q= G- Q=

——

We see that for the exponents » ="(5j, 2, 3, the rows of binomial . .

coefficients coincide respectively with the Oth, Ist, 2d, and 3d rows of
Pascal’s triangle. We shall now show that the analogous relations hold
for each n. To do this, we shali look at how the sequence of coefficients
for (x + 1)"**is derived from the sequence of coeﬁiments for(x'+ 1),
takmg advantage of the formula

A+ x=(+x + x). 3.7

Let us write down the expansions for the left-and right sides of this
formula in ascending powers of the letter x. For the left side, formula
(5.6) gives (by substituting n + 1 for n)

a1l n+1) n+1
(1 + %) -( . +( : }x+

+.(n:'1‘)x"+~-'+ (n-;— i)x", (5.8)
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- for some ¢. By virtue of the same formula (5.6), we have for the nght

side:

A+x+x% -

- [(g) + (’;,)“ i ( p)h(ux)'
- )+ Qs (e ()

A e e g e G

S0 [6)+ O 620 G-
LR Qe (e oo
Because of (5.7), the right sides of (5.8) and (5.9) are equal. Thgrefom,

g = p + 1; equating coefficients for identical powcrs of the letter X,
we get

- (3 ?) = (g) | o (5.40)
("Z")=(kik)+(:) fo<k<p+l, '(5.11)‘
(prd=() - | 5.12)

The relations (5.10)5.12) show that the sequence of coefficients of
the binomial expansion of (x + 1)*** are derived from the sequence of
coefficients of'the binomial expansion of (x + 1)* by Pascal’s law. Since
the sequence ol coefficients of the binomial expansion of (x + 1)°
coincides with Pascal's zeroth sequence, all succeeding sequences of
coefficients also coincide with the corresponding rows of Pascal’s

trxanglc Therefore, the numbers (Z) are defined only for k& =

" 1, BENCRT)



e

Binomial Caeﬁicfenks , : o 25(

’ : - . - -~
Remark! The question *“ What coefficients do x~3% and x2° have in the
binomial expapsion of (x + 1)°?"" may be answered, “ The coefficients

n) may be defined in a natural

are zero.” Therefore, the expression ( 3

manner ft the cases & < Qand & > n by setting (Z) £ 0 in these cases.

Then the‘equation (5.13) will hold true for all nonnegative n and all
‘mtegers k, by virtue of the redefinition of the symbol T"k which was
made in the preceding chapter.
 Thus, we have expressed the bm-rﬁgré‘ocﬁicients in terms of Pascal’s
operation. We may now re\:rite equation (5.6) in the following form:

(14X = T + Thx + T3 4o+ Tha* 4+ T, (5.14)

. Formula (5.14) is sometimes called Newton’s binomial formula, or simply
Newton’s-formula.! Another more traditional expression of th:s formula -
will be presented in chapter 7. ‘

in a certain sense, thie sectiori has provided a “solution™ to the

problem of finding an expression for the binomial coefficient (:)

‘Recalling chapter 2, we know that we have more than one criterion for
the “solution” of a problem. For example, if (under the second inter-
pretation) a solution is considered to be an expression which allows uss

to get the binomial coefficient ( ) fmm n and k, then (Z) isitself a

k
- solution. If we require that the solution express (:) in térms of the

. numbers n and k and certain standard operations (as in the third inter-
' pretation), our concept of “solution™ willqdepend on the collection of
standard operations chosen, If Pascal’s operation is considered standard,

then (5.13) is a solution to the problem of finding the binomial coeffi-

. n . . ‘ .
cients (}\) Another solution. to this problem, corresponding to a
different collection of standard operations, will be given in chapter 7.
1. Formula (5.14) was known long before Newton; in particular, Tartaglia had
already mentioned it, Newton's name is connected with the formula only because

he pointed out a2 method of generalizing this formula to the case of an arbitrary
rational (including negative) exponent in 1676,

32




6 K " The Ndmber of
SRR . Subsets of
a Given Set

In mathematics, any collection of objects is called a set. Thus,

(a) the collection of all pages in this booklet,
~ (b) the collection of all integers,
(¢) the collection of all even numbers, ,
(d) the collection of all the pencils in a certain box .
are all sets.

If some object and some set are given, exactly one of the following'
two statements is true:

1. The object belongs to the set.
2: The object does not belong to the set.

In the first case, the object is called an efement of the set, For example,
the number 3 is an element of the set of all integer® and is not an
elément of the set of all even numbers.

It ‘may happen that all elements of some set 4 are elements of another

set B (for instance, all elements of the set of all eveh numbers are
elements of the set of all integers). In such a case, the set A is said to be
contained in. or a subset of, the set B. Obviously, every set is a subset
of itself. I the set A is a subset of the set B8, and the set B is & subsct
of the sct 4. then 4 and B consist of the very same elements, and are
equal. ' .
Sets can be finire (like the sets in examples (a) and (d) above), or
infinite (like the sets in examples (b) and (c) above). Finite sets (and we
will study only such sets in this section) are the subject of a pﬁicuiar
discipline in mathematics-—that of combinatorial analysis.

A particular set stands out among finite sets: the set containing no

¥
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‘ clcments. the so-calfed ‘empty set, Thus, the possibility is taken into
" account that on opemng the box in example (d), we discover that the
set of all pencils conttained in it is ‘empty. The empty set is considered N
to be a subset of every set. -
I a set is finite, then its elements may be numbered to find how many :
elements are in the set. A set which consists of # elements is called an i
n-element set. The set of pages of this book is a 44-clement set, for
example, and the empty set is a zero-clement set.

' Example. Let us examine a set consisting of three objects, a pcncﬂ :
a pen, and an eraser, and determine all of its subsets. There is exactly
one zero-element subset, the empty set. There are exactly three one-
elemcnt subsets (fig. 6 l) :

=

. | Fig. 6.1 o J

* There are exactly three two-element subsets (fig. 6.2).
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‘ 'Fmally, there is exactly one three—clement subset (the set nself) (ﬁg 6. 3)

Fig. 6.3 e l

Thus, our set has eight subsets in all.. :
Let an n-clement set-be given; any k-clement subset of it is called a
combination of the n given elements taken k at a time. It is obvious that

‘the number of combinations of n given elements taken k at a time does

not depend on the 7 given elements, but only on the numbers 7 and .
The number of combinations of n elements taken k at a time is denoted

. .

Put differently, C*, is the number of k-clement subsets of an n-element
set. The expression C" is usually considered to make sense forn = 0,
1,2,...,and 0 < k < n?

The total number of subsets of an n-clement set will be dcnoted by
C,, so that

C‘=C“Q+C,‘1 + o4+ Cﬂs. A (61)

What are the numbers C, and C*,? We can answer this questionin a
few specific cases at once. From the example just invmtigated, we know
that Cg = 8, C% = C% = 1,and C%; = C% =

Furthermore, we can verify the three properties hstcd below.

First property of the number of combinations:
Cry=Cry = 1. (6-2)

Proof. 1t is clear that any m-clement set S has exactly one zero- '
clement subset (the empty set) and one m-element subsct (thc set §
itself).

1. However, the definition can be cxtcnded to make sense for & > n by setting it
equal to zero in this case (since fcr k > nno k-clement subset exists).
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* Without actually calculating the numbers C*,, we shall now establish
two more properties of these numbers. The proof of the second property
is a helpful exercise in the mastery of the concepts put forth in this
section; and the third property, together with the first, is a bas:s for
calculating the numbers C*,..

Second praperty of the number of combinations: ~

- - Ch=Chi. | (6.3)
Proof.. Let us consider any n-clement set M. We must show that the
number of k-element subsets of M is equal to the number of (n — k)- |
element subsets of A. Let us carry out the following construction
‘mentally. From paper, we cut out as many squares as we have k-clement
* subsets of our set %is, C™,) and on cach of them, we write out one
of these subsets, so That each k-element subset will be listed on exactly
one square. Let us also cut from paper C*,_, circles, writing each
(n — k)-element subset on some circle. It is now sufficient for us to
~show that there are equal numbers of circles and squares. For this
purpose, we lay all the squares on a table, and on each of them we place
" a circle, according to the following rule: If some k-element subset of -
the set M is listed on a square, we place on this square the circle on
which is listed the subset of the set M consisting of the remammg
elements

a c e, a
: Empty set

d e d c

Fig. 6.4 4

(for the case of a five-element set M, consisting of the elements q, b, c,
d, e, several squares together with their corresponding circles are shown
in figure. 6.4). It is evident that on each square there lies precisely one
circle, and that each circle will be placed on precisely one square,
implying that there are exactly as many circles as squares.

Before going on to the third property, let us prove the following
lemma. |

36



30 ' * The Npmber of Subsets of a Given Set

LeMMA. Let us choose some element a in an (n + 1)-element set S.
The number of k-element subsets of this set which contain this chosen
element is equal to C®; _,.

Proof. Again, let us conduct a mental eXperiment with circles and,
squares. We cut from paper as many squares as there are k-clement

* subsets containing the chosen element, and on each of these we list one -
.such subset, so that each of them will be represented once. We then cut
from paper C*,_, circles, and on eacHcircle we list one of the (k ~ 1)-

element subsets of the n-element set of all unchosen elements, so that
all such subsets will be depicted (there are n unchosen elements, and
therefore C*,_, such subsets). On each square we place a circle, accord-
ing to the following rule: If some subset A is depicted on a square, then
on that square must be placed the circle listing the st derived from 4
by removing the chosen element. It is clear that on each square there lies
exactly one circle, and that each circle is placed on exactly oge square,
implying that the number of squares and the number of circles are both

-equal to C",..,. Since we cut out as many squares aSthere are k-clement

subsets -of the (n + 1)-clement set containing the chosen element, the

number of such subsets is equal to C*,_;, which is what we were

required to'prove. ¢
We now go on to the third property of the number C*.

~ Third property of the number of combinations:
Cr+l =Ch%_, +C*%,1sk=sn (6.4)

Proof. Let us take an arbitrary (n + 1)-element set M and compile all
its k-element subsets. From M we choose some element . We denote by
X the number of k-element subsets of the set M which contain the
element g, and we denote by ¥ the number of k-element subsets of the
set M which do not contain a. Then

T ore = X 4 Y. )

.o '
But by the lemma, X = C"*,.,. Moreover, X is simply the number of
combinations of the # unchosen clements taken k at a time, that is, C",.
Therefore,

Cn+1k = an_.x + an’ . (66)

which is what we wanted to show.
The third property, together with the first, shows that the sequence

Cﬂ+10: Cn+119---: Cn#lﬂ«}-l (6'7)
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'xs derived from the sequence ~ |

. -~

. C“Os C‘ls ters Cnx (6'8)

by Pascal's relations. Since for n = 0 the sequence
. ~ .

C% o (6.9)
. coincides with Pascal's zeroth seq{xcnce,_ we know that for any arbitrary
n the sequence (6.8) will coincide with Pascal’s nth sequence, and thus,

Ch=T"%. , (6.10)

Thus, we have a means of caicﬁlating the number of k-element subsets
of an n-element set, that is, the number of combinations of » elements
taken k at a time (in this way, formula [6.10] gives a solution-to the

*‘problem of the number of combinations,” under the condition that
Pascal’s operation is considered standard).?

.. Finally, the relations (6.1) and (6.10) show that the number of all
subsets of an n-clement set is equal to the sum of all the entries in
Pascal’s nth sequence. As we know, this sum is equal to 2", Conse-

. quently, - -

-

v C, = 2" {6.11)

2. The reader will find a different soluuan, with different standard operations,
in section 7. ¢



 7 ' . TheConnectmn
I -, with Factonys’

In chapter 4, two methods of calculating thc number 7%, from the
numbers 2 and & were pointed out: the more * mechanical” fethod of
writing out Pascal’s tnangle (which, however, leads to su
calculations), and the method more economical with regard to the
steps (which, however, requires a certain organization of

3¢ These two methods are very similar, for in both cases the numbers

. are obtained using Pascdl’s relations. However, there is another

method of finding T*,, which we shall now discuss.. .
First, let us introduce a new symbol. We set

. it :

ol=1,

and for each whole number m, we define
ml=@m- im.
Thus, form > 0, '
JE =12 e m.
expression m! is read *“m factorial.”™
Wdshall now express Pascal’s operation in terms of arithmetic opera-

tions and the operation of taking factorials. For this purpose, we
examine the following expression:

m!

» Ty
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- Let us denote this expression by F™, 1t is clear that the expression
Fm, makes sense for m 2,0, 0 < ¢ < m. We notice that :
| . .

’ 0!
. C — . =
 Flo=grp = 1-
-~ Furthermore, I .
S el P pm
Fimally, \ -
ke al. ¥ L T n! n!
~ Tt B e =k 0 T R e = R
[ ‘_. n! + n!
¥ T k=D =K —k+1) "k~ Dik(n —k)!
o ) " _ .n! 1 1
o EA ﬂk—-l)!(n—k‘)z_'ln—k + 1‘+.EJ .
e L o a+1  m+ D
e NEOCEDR T Y L
= "1, 1<k<n l ‘.
Thus, the scquenoe' . * : < .
RN Fo |

]

is Pascal’s zeroth sequence, while the (n + 1)th sequence
o F“+109F“+11’---:F“*18+1

is dcrived% the nth sequence

-

Fna’Fnl’--n’Fnﬂ

»

by Pascal's relations. Therefore, for any m = 0, 1,2, ..., the sequence
S

FmQ:les“-sme
coificides with Pascal’s mth sequence, and

-

moo ‘m
PQ—Z Q"
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N\
m!

- . « q!(m .ﬂ}._ ' v
/

We have thus expressed Pascal’s operation in terms of the operations
of taking factorials, subtraction, muluphcat:on and division, in the
sense that we have found an expression for 7™, containihg only m, g,
and the symbols for the indicated operationd. This permits us to calcu-
late 7", directly, since we art able to calculate factorials, differences,
products, and quotients. . '

Several ‘interesting corollaries follow qmckly f‘rom the formula for
7™ just calculated.

CoROLLARY 1. Canceling (m — q)’ in the numerator and denommator
of the ;xpressxon for T™,, we get

‘( . };Z! -
™, HCET) ;
_ mm — 1)+ -[m — (g ~ Dlom — g)!

g m - q)!
_mm—1)---[m — (g — D]
_mm—1)---Im — (g = D] ” .

g{g— 1) ..

ot
)

COROLLARY 2" Let m > 1, m = g = 1. The product of the g factors
m(m — 1)---[m — (g - D] is always divisible by the product of the g
factors 1-2- . -q. ‘

Specifically, pecause of corollary 1, the ratio of these products is
equal to 7™, a whole number. N .

COROLLARY 3. From the rclation ([4.15), we get

1000!

111009 —_

g! (1000 — g)!

This is a new form of the solution to the problem of section 1.

COROLLARY 4. From the relation (5.13), we get
d

(n)'_ n! an = D= (k= D]
- Tkl — k) 1200k

“

11 o
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Thxs is the' traditional hxgh-schocl cxprcssxon for the bmom1a1 co-
- efficient. -

Conomy 5. From the_relation (5.14) and corollary 1, we conclude:

‘.‘ ‘ 8 — " “(‘.1 1) .
- 1+ x) —.1+nx+ 12 x3 +
-, nn - 1) [’1—(‘5—,1)] .
+ = i xk+. +xl.

This is the traditibpal high-school form of Newton’s binomial formula. |
COROLLARY 6. The relation (6.10) gives the traditional high-school
formula for the nuinber of 'combinaiions

Cﬂ n! _n(n — l) [n - (k —- D]
Kl(n — k)] 1-2-

- o~y
o)
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